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Abstract

This paper presents a new approach to solve the problem of job scheduling in
parallel heterogeneous systems. We introduce a classification for the given job
scheduling problem by the heterogeneity of the systems, from the view of the
schedulers’ eyes. Then, according to this analysis, a new scheduling strategy for
so-called “Strictly-Heterogeneous” systems is proposed.
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1. Introduction.

In large parallel computing  systems, as the number of the users and the resources
increases, processing scheduling becomes more important as a means to  achieve the
best of parallelism by an efficient processing and high system utilization.

For the last few years, a number of scheduling algorithms for uniform systems  has
been published. However, heterogeneous systems and uniform systems are different,
therefore scheduling strategies for them, consequently, are also different. Besides, a lot of
algorithms for uniform systems sometimes are specialized on a particular or a standard
uniform type of the system architecture [1][2][3].

In this paper we study job scheduling for parallel heterogeneous systems, where not
only computing nodes are heterogeneous but also tasks (jobs) can belong to different
classes as well. We provide the Objective-Oriented Algorithm based on a strategy which
has not yet been commonly used before in scheduling.

2. Heterogeneous Computing Model.

2.1. Description of System Model.

As stated above, we will study scheduling strategy for “ Strictly-Heterogeneous ” systems.
The computing model, in which our scheduling algorithm works, has been derived from a
large parallel and distributed system and has been studied before in [4]. In the real world,
this system consists of : First, different resources, they are heterogeneous nodes-users Ui
(e.g. different computers, or processors) and the commonly-used  resources CRj (e.g. the
severs) ; Second, tasks of different kinds Tl, which come from users-nodes or from outside
(e.g. from other systems). As in any parallel systems, these so-called mother-tasks are to
be maximally  parallelized. They are divided into son-tasks (small computing modules)
which we will call jobs. These jobs are different as well because they come from different
tasks.

Therefore, the given system can be represented by:
• A set of Q tasks ST={T1, ...,TQ} with all their heterogeneous features.



• a set of N resources SR={R1, ...,RN} with all their heterogeneous features;
• A matrix of communication channels between them MCR[1..N,1..N], where MCR[i,j] is

the weight (cost) of communication between Ri and Rj , and MCR[i,j] ∈ ℜ+ . We say
there is “no connection” between Ri and Rj when MCR[i,j] > ΩΩ0 (some given number).

 2.2. Statement for Problem of Job Scheduling.

 As is discussed above, the whole job scheduling process is a complex of procedure-steps.
In this paper we will focus on the most important step —  step of scheduling jobs onto
resources. In more detail, it can be stated as follows:

 At a moment in time  there are:
n N heterogeneous resources of the system, which are represented by a graph

GR=(VR,ER,WVR,WER),  where:
• VR= {R1, R2, ..., RN}is the set of N resources-nodes, Ri ∈ Ν|, i=1..N.
• ER={E1, E2, ..., Ed}is the set of edges, which represent the physical communication

links between resources Ei = {Ri,Rj}, where Ri, Rj ∈ VR and 0≤d≤N2 .
• WVR={ WVR1, WVR2, ..., WVRN }is the set of nodes’ weights, where WVRi ={REi,

RTi}. For ∀ i=1..N, (i): REi ∈ ℜ+ is a ratio that characterizes the capacity (e.g. by the
speedup, by local memory) of the given resource Ri ; (ii): RTi ∈ {0,1} is the state of
the resource (free or occupied).

• WER={ WER1, WER2, ..., WERp } is the set of edges’ weights and it can be
represented by a matrix RC=RC[i,j] ∈ ℜ+ , where i=1..N, j=1..N, and 0 ≤ p ≤ M*N.

n M independent (no precedent relationship between each other) and different jobs,
which are represented by a set VJ={J1, J2, ..., JM}. The heterogeneity of jobs is
characterized by data sets Ji ={JNi, JEi, JLi}, i=1..M, where:
• JNi  ∈ Ν| is ID of the job (e.g. the number).
• JEi ∈ ℜ+ is the work amount for executing the job.
• JLi ={(R1, ϕ1), ..., (R

q, ϕq) } represent the logical communication links of the given
job to the resources, where Rl ∈ VR is the resource  which the given job need to
communicate with (it is determined by the resource where the predecessor-job of
the job has been executed) ,  ϕ1 ∈ ℜ+ is the amount of data transfer,  l=1..q, q ∈ Ν| .

• JPi ∈ ℜ+ is the priority of the job i if the priority system for jobs exists.
• The requirement for the given problem is to find out a schedule for M jobs onto N

resources so that the processing achieves the two following optimization goals:
minimum total actual execution time or shortest response time for each job.

3. Solution Basis.

 3.1. Related work.

 It has been shown that the given problem is NP-hard [5]. Therefore, most of scheduling
algorithms use heuristic or genetic approaches[6][8][13][15]. Besides, there are two
important issues that are be to considered, while solving a scheduling problem. They are:
solution quality (how the received schedule is near to the optimum one) and solving time
(scheduler execution time).
 In dealing with solving time: The requirement for solving time depends on the type of
scheduling. Static scheduling algorithms can have a long solving time while the Dynamic
ones always have a short solving time.

 As is said above, because of the complexity of the problem, most of the scheduling
algorithms are heuristic or genetic. In the algorithms that have been published recently, a
genetic method called Simulated Annealing (SA) is used very commonly [6][8][7]. This



method is good because of its flexibility. By resetting the values of the parameters for the
simulation (the initial and freezing temperatures, the ratio for decreasing temperatures) we
can receive many kinds of schedulers, which are different by the ratio between solution
time and solution quality as follows:
• From the fastest scheduler, which gives a schedule with a random quality for the

minimum solution time;
• To the slowest one, which checks all possible variants of schedules and  gives us the

exact solution (real optimum schedule).
 Usually, the simulation parameters are set so that the result is in the middle between

these two extremists. However, the solution time for achieving an acceptable-optimum
schedule is too long, especially when the problem size (M,N) is great., and also, the
solution quality is unpredictable.

 3.2. New Approach with Hungarian method.

 As it has been reviewed above, in order to achieve two conflicting goals: short scheduling
time and good quality of the schedule, we always have a trade-off between solving time
and solution quality. The point is how to achieve the “golden mean”.
 Scheduling Strategy for dealing with solving time: For the system that is described above,
our goal is to develop a balanced algorithm, which gives us a schedule of good quality for
an acceptable solving time. In order to see explicitly the difference of our approach from
the existing ones, let us analyze again (but now from the view of strategies) the above
approach of scheduling by using simulated annealing (SA):

 Suppose that all possible variants (Ri) of schedules can be set as the “balls” in a “box”.
The variants-balls are located  in a chaos. Among them, there is a real optimum one that is
to be found. Now, see how it is found by SA and by our algorithm with using Hungarian
method [10][11].

 In SA, all the variants are put in the Markovian chain as all the balls are connected
each to another, with a visual “thread” (Figure 1.a). The search is started with a random
variant-ball in the “pocket”  and is guided by this thread. During the search, the next ball is
compared with the one in the pocket; If the first is better than the second then it will occupy
the pocket, and so on. After a given number  of steps, the variant-ball in the pocket is
thought of the optimum one of all the balls  in the box. However, if  the real optimum
variant-ball is not the searched area then the received variant is not optimum, obviously.

 The key idea of the new approach is to detach from all possible variants (the box) a
zone, which contains exactly the real optimum variant Vop (for the given optimization
criteria) and is less than the box (Figure 1.b.). Then, the search is carried out only in this
area until it reaches the real optimal variant Vop. Therefore, we will receive the exact
solution while the solving time is much less
than it is in SA for finding a solution of the
same quality.

 
 Figure 1.b. New scheduling
strategy.



 

 Moreover, using the Hungarian method (which
will be described in detail later) for such an
approach allows us to carry out not a random
search (as it is in SA) but a so-called “objective-
oriented search” in the chosen area, where the
objective is the real optimum variant Vop. That is
why we name the algorithm “Objective-Oriented”
(OOA). The selection of the Hungarian method is
not by chance but it is based on a careful

investigation that is studied in [12].
 Scheduling Strategy for dealing with solution quality: We have to determine the
optimization criterion and the scale of optimization area.
n Heterogeneous systems usually are distributed. Therefore, we think it is necessary to

consider communication costs in scheduling for such systems. To escape the
conflicting goals: minimizing execution time of jobs (by maximally parallelizing them on
the maximum number of resources); minimizing response time and communication
costs (by  decreasing the number of using resources), we determine one balanced
optimization criterion as to parallelize jobs as far as possible, then to minimize the total
system executing time (while the execution time of jobs is included with the
communication costs).

n From the feature of Hungarian method that works very efficiently with problem size
range 10-100, we propose two variants of optimization:
• First variant; when M>100 , the jobs are randomly grouped into a slice of N jobs.

Then the local optimization is carried out for N jobs and N resources. The size of the
optimization zone n = N.

• Second variant; when M<100, all the jobs are in a global optimization with K
multiple groups of N resources, where K ∈ Ν|  and K>[M/N]. The size of  the
optimization area n = N.

 

 3.3. Algorithm Basis.

 With the chosen strategies for scheduling, which are mentioned above, there are three
important issues, whch now will be studied in detail:
• Forming the “box”.
• Determining the searching zone.
• Building a rule-guide for the objective-oriented search.
 A. Box Forming.
 It means the way to represent the data for scheduling. For the initial data, we have: a set
of M independent jobs with the data about their heterogeneity and communication
requirements; a graph of N resource-nodes with their heterogeneity and communication
links.

 Now, for forming the box, we have to reform this separate initial data into a form that
represents directly the relationship between jobs and resources: a matrix of size M*N and
that we will call Job-Resource matrix (JR). Each element JR[i,j] of this matrix is the weight
of the assignment of a job i onto a resource j. These weights are determined by an
optimization function ∆(i,j). The formation of this function is based on the optimization
criteria.

 
 Figure 1.a. Scheduling strategy in
SA



 Suppose that the jobs and the resources are identified respectively by two sets  VJ={J1,
J2, ..., JM}, VR={R1, R2, ..., RN}. In general, the optimization function can be determined as
the following:
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 is the degree of satisfying the optimization requirement y for the assignment
(Ji,Rj),; Ly ∈ ℜ+ and Ld ≤ Ly ≤ Lu  is the weight ratio for the optimization criterion y. (Figure 2)

 

 

 

 

 

 

 

 

 

 

 

 Figure 2. BOX with Matrix JR (n=6; δδmax.=100;  ψψexist=30;)
 

 Therefore, finally, for all elements of the matrix JR[i,j]= ψψi,j, i=1..M, j=1..N, we have : 0≤ψψi,j

≤ δδmax and the value ψψexist = δδmax - δδexist as the threshold for determining if the
assignment(Ji,Rj) is possible or not. The size of the box n is determined as in section 2
(based on the value of M and N) and according to the optimization area
 B. Determining searching zone.
 After determining job-resource matrix JR as the “box”, the next important step is to
determine the zone for searching the real optimum variant of  possible schedules.For
further study we provide some definitions about the assignments and the schedules as the
follows:
 Definition 1: There are two given sets: VJ={J1, J2, ..., Jn} and VR={R1, R2, ..., Rn}. The pair
a=(Ji,Rj) is called Assignment of  the job Ji ∈ VJ onto the resource Rj ∈ VR. Each
assignment has its weight that is determined as Ψ(a)=Ψ(Ji,Rj.
 Definition 2: For two given sets: VJ={J1, J2, ..., Jn} and VR={R1, R2, ..., Rn}, a set      A={a1,

  RESOURCES
   1  2  3  4  5  6
  1  8  5  71  7  6  9

 J  2  6  3  9  1  47  7
 O  3  5  59   3  6  8  8
 B  4  9  1  8  95  5  4
 S  5  1  2  1  80  2  3
  6  6
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a2, ..., an*}={(R1, J1), (R2, J2), ..., (Rn*, Jn*)} is called Maximum matching for such jobs and
resources if:
• ∀ i=1.. n*, Ψ(ai)=Ψ(Ji ,Ri )< ψψexist .
• ∀ i=1..n*,  Ri ∉ AR\ Ri , Ji ∈ AJ \ Ji , where AR={R1, R2, ..., Rn*}, AJ={J1, J2, ..., Jn*}.
• n* is maximized as far as it can be.

 Definition 3: A maximum matching A* with the size n* for two given sets: VJ={J1, J2,.., Jn}
and VR={R1, R2, ..., Rn}is  a possible Schedule for such jobs and resources if  n* = n. The
weight of the schedule then is determined by: D A a i
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n
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 According to the Hungarian method, the searching zone SZ is limited by  so-called
minimum assignments a*=(J*,R*) which have the minimum weights Ψ(J*,R*)  in
comparison with other assignments in the same rows or in the same columns of the matrix
JR with size n. These minimum assignments create the bounder called B0 for SZ which
can be found in the following way:

 For i=1.. n, j=1..n, if :
•  (Ψ(a*)=Ψ(J*,R*)<ψψexist ) and

•  (Ψ Ψ( *) ( , )mina J R
i

n

i j=
=1
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j

n
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)

then a*= (J*,R*) ∈ B0.
Therefore, the bounder B0 of the searching zone SZ is determined by a set of minimum
assignments  Ab = {a1*,a2* ,..ab0* }.

In the Hungarian method, the bounder is marked by making the minimum assignments
Ab0 on it become the so-called zero assignments. It is obvious that if we subtract the same
number S from all elements of a row (or of a column) in the matrix JR then the minimum
assignments still remain as the minimum ones. In other words, if we subtract the weight of
the minimum assignment (S) from all elements, for each row and each column, we will still
have the same bounder B0 with the same minimum assignments  Ab = {a1*,a2* ,..ab0* }.
The only difference is that these assignments will have zero weights.

In summery, after all, the found bounder B0 of the searching zone is a set of zero
assignments  Ab = {a1*,a2* ,..ab0* }.
 C. Objective-Oriented Search.
After determining the bounder of the searching zone, we have to carry out the last and the
most important step - to search the optimum variant of the schedules in the determined
searching zone. The search starts from the found bounder B0, which is marked by zero
assignments and goes to the so-called current “Searching Line“ (SL) by the following
steps:
(1)  First, check if the optimum variant Vop is on the bounder B0 or not. That means to check if

there is a schedule from the minimum assignments  Ab0={a1*,a2*,..ab0*}on B0. If so, go to
(2). If not, go to (3).

(2) If any schedule is found, it is the real optimum variant Vop. According to definition 3,
we have a schedule on SL if there are such n minimum assignments A*={a1*,a2* ,..an* }⊆
Ab0 that A* is the maximum matching for the given jobs and the given resources. Suppose
that for two given sets: VJ={J1, J2, ..., Jn} and  VR = {R1, R2, ..., Rn}, we have A*={{R1, J1),
(R2, J2), ..., (Rn, Jn)} and AR={R1, R2, ..., Rn}, AJ={J1, J2, ..., Jn}. By definition 2 this means:
• ∀ i=1.. n, Ψ(ai*)=Ψ(Ji ,Ri )< ψψexist .
• ∀ i=1..n,  Ri ∉ AR\ Ri , Ji ∉ AJ \ Ji .



After that, the real optimum variant Vop is found. Therefore the search has to be stopped.
(3)  If we can not find any schedule from the first-minimum assignments

Ab0={a1*,a2*,..,ab0*}, this means there is no real optimum variant Vop on SL. Therefore,
the search must be continued in the searching zone.The new SL inside the search
zone SZ is found from CB by the procedure of Making New Zeros by the Hungarian
method [10] as the set of second-minimum assignments (Figure 5.b.). Then go to (1)
and repeat the same procedures for the new SL as for the current ones.

Figure 3.a.  B0 of “0”s in Matrix JR (n=6)          Figure 3.b. SL of “0”s in Matrix JR (n=6)

Note that there are two conditions for finding Vop: First, there is a set of the minimum
assignments; Second, there is a schedule (a maximum matching) in this set. In the steps
described above, the search is continued not randomly inside the whole area of SZ but
only with the assignments on the line SL which characterizes the primary condition for
having Vop. Therefore, the search is oriented to Vop all the time, unlike random search in
simulated annealing method. And that is why we call the algorithm objective-oriented
(OOA).

4. Analysis of Simulation Results.

Besides the theoretical analysis, the practical analysis that is based on simulation results
is another way to show the advantage of the new algorithm and to examine its the
performance in comparison with the existing ones.

An algorithm with random scheduling and an algorithm using SA technique [7] are
executed together with OOA for comparing their performance. The comparison criteria are:
(i) the solving times (the time for finding the schedule) and (ii) solution quality of received
schedules (the time for executing M jobs with N resources by the found schedule in the
given system).

Briefly speaking, the input data is formed of the so-called basic data sets (BDS) of M
jobs and N resources. There are two factors that have an influence on solving time and
solution quality:
• The size n of the system which is characterized by M and  N.
• The heterogeneity Het of the system which is characterized by how different the

elements in matrix JR can be. Het is the ratio (in%) of the number of the different
elements in JR.

 To illustrate the efficiency of OOA, we use 50 random BDS, where the number of jobs
M∈[20,120] ; the number of resources N∈[3,30].

 Firstly,  the problem size n is changed from 3 to 30. For each given value n, we
investigate solving times and solution quality of Random, SA, and OOA. The
simulation results are shown in Figure 7.a and 7.b. They show us that the quality of
received schedule by OOA is much better than the ones by SA and, off course, by
Random scheduling (Figure 4.a.). Although the solving time of OOA is more than the

RESOURCES
1 2 3 4 5 6

1 3 0 2 6 2
J 2 5 2 8 0 4
O 3 2 0 3 8 3
B 4 8 0 7 5 1
S 5 0 1 0 2 0

6 1 3 0 6

RESOURCES
1 2 3 4 5 6

1 2 0 1 0 1
J 2 5 3 8 0 4
O 3 2 0 3 5 3
B 4 7 0 6 3 0
S 5 0 2 0 1 0

6 0 2 0 6



one of Random scheduling, it is much less than the solving time of SA (Figure 4.b.).
We will have the similar graphics if the problem size is increasing. We do not
provide the graphics of comparing with larger size than 30 because of the great
solving time of SA. Indeed, the larger the problem size (n) is, the better OOA is,  in
both scheduling issues: solution quality and solving time..

 Secondly, when the problem size is fixed, in our case n = 30, while the heterogeneity is
changed by Het∈[10%,90%], we study solving times and solution quality of Random, SA, and
OOA. The simulation results show us that while solving time of all algorithm
(Random,SA,OOA) do not depend on system heterogeneity. However, the heterogeneity of

the systems has an influence on solution
quality.

5. Conclusions.

 We have presented a new approach to solve the problem of job scheduling in
heterogeneous systems. The new approach using the Hungarian method provides a quick
and objective-oriented search for the best schedule by two optimization goals: (i) minimum
total execution time including communication costs and (ii) shortest response time for each
job. In addition, using the modified algorithm (which has been provided in [12]) for this
method,  the solving time is decreased to O( n(E+nlogn) The explanation of this fact is that
the modified algorithm [12] which is applied for searching Vop on current SL (in 4.3.) is
very good fit for such kind of searching.

 The advantages of the proposed algorithm OOA are: (i) achieving a good balancing of
several conflicting optimization goals: minimum execution time, minimum communication
costs, short response time; (ii) scheduling for a relatively short time; (iii) flexibility in
application because scheduling  is carried out in a general computing model, where there
is no requirement for the system architecture; and finally, (iv) especially good for so-called
“Strictly-Heterogeneous systems, where either the jobs and the resources can be very
different, even unrelated.

 For future work, there are two ideas for decreasing the solving time and increasing the
solution quality of the proposed algorithm OOA: (i) combining OOA with SA technique for
creating a new algorithm having less solving time while controlling the solution quality so
that it is acceptable; (ii) simplifying the local optimization in current OOA and adding a
simple optimization function for global optimization (by considering workload balance in the
global scale).

 

 
 
 Figure 4.a. Investigation of Solution
Quality.

 
 
 Figure 4.b. Investigation of Solving
Time.
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