
 INTELLIGENT SOLVING MACHINES: PRINCIPLES OF
CONSTRUCTION AND PERSPECTIVES ÅÑ

 Koval V.N.1

 V.M. Glushkov Institute of Cybernetics. National Academy of Sciences of Ukraine.

 Abstract

 The paper considers the hardware support provided for the distributed data and knowledge
bases, and the same support is aimed at the specific class of the knowledge-oriented architectures,
i.e. at the intelligent solving machines, which possess the developed high-level internal language
and make it possible to efficiently realize the graph structures and parallel computations.

 I. The pre-conditions of work

 1. During many years, the specialists of V.M. Glushkov Institute of Cybernetics (National
Academy of Sciences of Ukraine) were engaged in creation of the microprogram-based
computers with the developed internal languages, with the flexible architectures, and
oriented to the specified classes of the problems being solved. They are the MIR-series
and UKRAINA computers; the shared intelligent terminal, used for the ELBRUS
supercomputer, etc. [1].
 The notion of machine intelligence, applied to the above-mentioned computers, is
formulated and extended in [2]. This notion is characterized by:
• the ability to perceive high- and superhigh-level languages;
• the ability to work not only with data, but also with knowledge;
• the interactive cooperation of a user with a computer;
• the specific arrangement of a computation process.
 2. We have the certain experience as for statement and solution of the problems present in
the weakly-formalized domains that are directly associated with the AI sphere. They are
classification and generation of notions, scheduling of actions, searching for regularities
(when dynamical situation are recognized and some other recognition problems are
resolved), probable reasoning as for computerization of deductive and inductive
inferences, etc. [3], [4[, [5], [6].
 3. The advent of some foreign developments used to solve AI problems, implementation
and criticism of the Japanese project, the fifth-generation computers, as well as design
and creation (during the last years) of some special-purpose architectures oriented either
to the separately-taken models of knowledge representation (in particular, of
semantics of big sizes), or to the support provided for a number of the declarative
languages like PROLOG or LISP [7].
 4. There was the intensive development of the architectures used for parallel
computations: SMP (Symmetric Multiprocessor System), MPP (Massively Parallel
Processing), or SPP (Scalable Parallel Processing) [8].

1 V.M. Glushkov Institute of Cybernetics. National Academy of Sciences of Ukraine. 40, Prospect Akademika
Glushkova, 252222, Kiev, Ukraine.
Tel. 266-70-85, fax 266-45-49,
e-mail: vkov @ valnat. kiev. ua

 5. And, finally, there is the trend concerned with the hardware support provided not only for
the special-purpose technologies, but also for the existing commonly accessible
technologies used for knowledge processing (when different problems are resolved). This
was said by Microsoft not so long ago [9]. This circumstance is to promote the universal
computers of broad application that are oriented to a mass user.

All these moments taken together, and the demands has forced us to try to develop the
distributed parallel architecture that realizes high-level languages, used to solve the traditional
problems along with the AI ones and aimed at mass utilization [10], [11].

As for the pre-conditions, it is necessary to make one more remark. Our work is of the
conceptual character to a large extent. We hope that the decisions made by us will turn out to be
efficient. But we want to emphasize here that two patents were got by us for the main architectural
decisions made within our design: one of them is Russian that is devoted to the architecture and
structure of the computer system; and the second patent is Ukrainian, and it is devoted to the means
of conflict-free switching [12], [13].

 Ii. The new information technology used to solve the ai problems.

Now, some words about the features of the information technology concerned with solution
of the AI problems. The contents of Table 1 qualitatively compares the technologies used to
resolve the traditional problems and the AI ones. The AI-based problem solution technology, called
the new information technology (NIT), is described in [14].

Table 1

 Characteristics Traditional NIT
 Application domains Strongly formalized Weakly and strongly formalized

 Method of solution

 Single running
 Cyclic application of trial-and-

error method
 Stages of problem solution
process computerization
stages

 Program execution
 Construction of problem

models;
 program synthesis and

execution
 Order of program
construction and

 Stages are strictly
divided

 Stages may alternate during
problem execution

 Human-computer operation
style

 Construction of
complete problem
model; interactive

interrelation is used only
for program debugging

 Strong interactive interrelation;
models are corrected during

problem construction and
execution

The main method used to solve problems according to NIT is the trial-and-error method
applied in a cyclic manner (this is seen, because different solution construction strategies are
present). The not completely determined situations are often met in this case, therefore, the program
construction and execution steps are alternating by turns and are not divided within NIT, while they
were strictly divided under the traditional solution technology.

This circumstance, in its turn, provides the necessity not only for the program execution
steps, but also for the steps of solution synthesis: it is necessary to construct a problem solution

schedule, i.e. to achieve some known and clearly specified goal on the basis of some chosen
strategy.

On the one hand, to support the NIT and, on the other hand, to realize the existing
technologies of solution of the traditional problems, some new architectural decisions were needed,
and we tried to implement just them within the framework of the Intelligent Solving Machines
(ISMs), i.e. of the universal computers with the integrated architecture, which unite the features
possessed both by the special-purpose architectures, used to solve the AI problems, and by the
traditional architectures.

 Iii. The main principles of isms construction

The principal feature of the ISM-class computers is that their architecture embodies four
important properties:
• the hardware support of procedural and declarative high- and superhigh-level languages
provided on the basis of application of an internal high-level language;
• the hardware support provided for the operations with the distributed data and
knowledge bases, represented as the graphs, and with the other complicated data
structures (CDSs);
• the combination of the centralized and decentralized control, and the 2D interpretation is
the basis here;
• and the distributed processing of the information based on the memory-processor
medium (i.e. the active memory is meant here).

The generalized graph concerned with ISM creation and realization problem formation is
shown in Fig. 1. The Figure consists of two parts (i.e. of the upper and lower ones) and shows the
process of transition from the statement of the ISM creation problem within the NIT, HLL, CDS

Fig.1

and Knowledge framework to its embodiment within the framework of an Internal HLL, Semantic
Networks and Simple Data Structures (SDSs). It can be seen that the HLL is projected into the
internal HLL, the knowledge is represented as the semantic network and the CDSs are given as the
superposition of the SDSs.
 The lower part is already the realization of the Internal HLL by means of the Controlling
Interpreting Processor; of the Semantic Networks by means of the graphs; and of the SDS
processing by means of the microprocessor (MP) medium (the active memory). The
interconnections between the objects that reflect the information processing running in the
ISMs will be clarified in the forthcoming discussion.

A peculiar place in the ISM-class computer belongs to its internal language. It is the C++-
like procedural HLL enhanced by a number of the graph-oriented operations and by the
parallelization and computation process control means. It is called C+Graph. It is supposed that it
possible for the programs to be sufficiently easily compiled and converted into this internal
language from a number of the traditional HLLs and SHLLs, like C++, JAVA, PASCAL,
FORTRAN, BASIC, APL-360, PROLOG, and others.

Therefore, the traditional programs are realized for computational problems on the ISM-
class computer in a natural way.

The knowledge and CDSs are represented in the ISM as the oriented graphs. For each graph,
there exists the distributed representation in the form of the connecting list (the adjacency matrix,
etc.), and, in addition, the graph may be represented as the object (without the internal structure).
The set of the graphs-objects may be the semantic network which can be operated without the
distributed representation.

The graphs play one of the principal roles. On the one hand, this graph is the CDS, i.e. the
data type characterized by its objects and by the operations aimed at them, and, on the other hand, it
is the program which is executed, i.e. this is the type of control. The graphs can help to
sufficiently easily represent the complicated dynamic structures of the data and knowledge as the
trees or semantic networks which may vary in time and grow down, in breadth, and so on.

To process the graph structures in the C+Graph language, the specific means are used, i.e.
the "graph"-type variables and “graph”-type class, and this is the set of the operations and of the
mechanisms of their interrelation used when the operations are aimed at the "graph"-type variables.
As the examples of these functions, there are graph construction, graph search, choice of a value
from a graph, etc.

In addition to the graph-based means, the internal language is also enhanced with the means
of parallelization and control of a computation process like "fork", "join", "any", parallel "do",
parallel "if", etc., and this is done in order to arrange the parallel computations.

Since it is impossible for the C+Graph-like language to be hardware-realized on the basis of
the MPs with the RISC-architecture, then the two-level language must be built, while each level is
realized on the basis of their components (Fig. 2).

The upper level is the algorithmic language like C+Graph, which contains the graph and
parallel operators and the means used to operate with them. This level fixes the machine purpose as
a whole and the centralized control that corresponds to the same level. The lower level is the usual
MP command language. This lower level fixes the direct information processing and the
decentralized control corresponding to the same level.

Therefore, the presence of two internal-language levels provides the combination of the
centralized and decentralized controls in the ISM-class computer.

The centralized control is performed by the internal language interpreter according to the
program execution graph. This graph is the dynamic object. First of all, it is constructed by the
compiler under transformation of a program from an external language into an internal language,

and parallel branches are labeled. It is continuously transformed further on, depending on the
problem solution way. The program execution graph is the CDS for the interpreter. Each vertex of
this graph is brought in correspondence with some section of the program in the internal language,
and some separate sequence of the vertices is brought in line with the parallel branch. Naturally, the
internal language interpreter can simultaneously process the set of the parallel branches or of the
separate independent problems. Some field of the processing virtual processors may be brought in

correspondence with this set, and, in their turn, they are mapped onto the field of the physical
processors. When the set of the virtual processors becomes larger than the one of the physical
processors, the latter form the lines as for execution of different program parts. The interpreter
saves the whole set of the parallel branches and transfers the control to the operation system in
order to realize the serial and parallel processing in the MP field.

The source program may contain the description of the semantic network. If the semantic
networks are processed, the interpreter functions in much the same way, as this is done when the
program branches undergo processing. It scrolls the semantic network and modifies it, i.e.
constructs the nodes and the interrelations between them by means of the graph processing
functions. The semantic network is also built and processed dynamically during the program
execution process.

Therefore, the internal language interpreter replaces the operational system at the stage of
processing of the semantic networks and source programs. i.e. the functions of the interpreter are
the same as the loading functions of the operational system. A the same time, the interpreter

Fig. 2. 2 D INTERPRETATION

initializes the accesses to the operational system in order to call its standard functions for
distribution of the problem branches between the MPs and for their arrangement into a line, the
memory is distributed, and so on.

The decentralized control is the control of the execution of program sections performed by
the separately taken MPs (on the basis of which the parallel ISM architecture is built) within the
program execution graph vertices. During the decentralized control, there is the transition from the
upper level of the internal language to the language of the MP commands, and these commands are
executed. Each MP--field microprocessor saves in its memory the so-called kernel of the internal
language interpret, in which the table is fixed that contains the correspondences between the
internal language operators and their subprograms in the MP command language. Thus, the internal
language interpreter is, so to say, distributed in the space of the whole machine. Since there may be
many simultaneously operating MPs, this circumstance provides the possibility for the parallel
interpretation of the internal HLL operators.

Thus, the two-step interpretation is implemented in the ISM-class computers. In the first
case, it takes place at the level of the internal C+Graph language interpreter and, second, it is at the
level of the kernels of the interpreter of the same language that are located in the executive Mps.
Hence, there appeared the notions of 2D interpretation, seen when the parallel architecture is
controlled, and of the two-level internal language. It is just this circumstance that makes it possible
to implement an HLL on a parallel architecture. It can be easily understood from Fig. 2.

IV. ISMs EQUIPMENT STRUCTURE

The ISM equipment is made up in such a way, that the internal language and the
mechanisms of operation with the graphs are hardware-supported, and the centralized and
decentralized controls are efficiently performed. We, as well as the other specialists, use the cluster
principle of arrangement of the system, but with one specifically singled-out Supervisory processor
and with the means of switching between the clusters.

The cluster is the SMP-type symmetric parallel architecture. The cluster totality has the
features both of the MPP- and SPP-architectures.Each cluster may include 2-8 different-type MP
modules (RISC, SISC and the digital signal processors). The cluster has the 8-Gbytes memory
subsystem, the interrupt processing subsystem, the subsystem of the external memory of 50 Gbytes,
and the I/O subsystem used for the communications established with the control processor, the other
clusters and the user terminals on the basis of the PCI and EISA buses. To improve the traffic,
several buses are introduced.

The Supervisory processor is aimed at the centralized control and synchronization of the
array containing the MP modules. It realizes the C+Graph HLL as the internal language with help
of the interpreter of this language. This processor contains the control structures of the HLL
interpreter: the tables, the stacks, the queues, the messages and the charts that reflect the queries of
users and their programs.

The Supervisory processor communicates with each MP module and with all these
modules by the intercluster channel switch and by the short-message one. The short-message
switch is the conflictless circuit which transfers the interrupt codes. The intercluster channel switch
is the fast table arbitration system without delays that has the specific arbitration mechanism.

When the system is initialized, the MP module is loaded with the kernel of the internal
language interpreter, the frequently used operational system subprograms, the mathematical
functions and the library HLL functions (for instance, they are the functions of memory
distribution, queue processing , sorting, etc.).

 Tabl.2
Characteristic Cluster Level System Level
Scalability 1 : 4 1 : 8
Clusters in system 2 - 8
MPs in Supervisor processor 1 - 2
Number of Mps 2 - 8 2 - 64
Types of applied Mps RISC, SISÑ, DSP
Types of MP models Power-PC, Pentium-Pro, TCM320
Common memory up to 4 Gbytes 16Gbytes (4 clusters)
Disk memory up to 48 Gbytes 200 Gbytes (4

clusters)
Number of service monitors 64

Intercluster communications:
by interrupts
by data transfer

Short-message switch
Intercluster channel switch

Peak performance:
digital operations /sec
floating-point operations /sec

up to (60x64)SPEC
int_base
up to (120x64) LINPACK

_rate_95
TPP (MFLOPS)

logic instructions /sec up to 3 MLIPS
Software for C+ GRAPH Coprocessor, compiler,

interpreter
converters, parallel

Programming languages C+Graph, C++, PASCAL, ALGOL, PROLOG
Support of operational systems SCO UNIX Ware 2, Micro soft Windows NT4

Table 2 shows the expected characteristics of the ISM-class computers. It is seen that these
expected ISMs characteristics are in agreement with the contemporary viewpoints concerned with
high-performance distributed architectures. The features inherent in the SMP-, SPP- and MPP-
architectures, as well as their software, are organically combined here, and this circumstance makes
it possible to wait for the efficient implementation of the traditional problems. Since the ISMs have
the developed internal C++-like language, that possesses the powerful means used to process the
graphs of a high dimension, the possibility to resolve the non-traditional AI problems is essentially
greater, while these AI problems are based on knowledge processing, inductive and deductive
constructions, etc.

It should be noted in conclusion, that the direction of the investigations, concerned with ISM
and creation is rather promising. It is expected, that the nearest future will bring some of the
obtained and completed model-based experiments associated both with the architecture of and the
mathematical support provided for the concrete ISM versions, and, maybe this circumstance will
promote the further direction of this work.

1. Âû÷èñëèòåëüíûå ì à ø è í û ñ ðàçâèòûìè ñèñòåìàìè èíòåðïðåòàöèè / Â.Ì.Ãëó ø ê î â, À.À.Áàðàáà í î â ,
Ë.À.Êàëèíè÷å í ê î è äð. - Êèåâ: Íàóê. äóìêà, 1970. - 258ñ.

2. Ðàáè í î â è÷ Ç.Ë. Î ê î í ö åïöèè ìà ø è í í îãî èíòåëëåêòà è åå ðàçâèòèè // Êèáåðí åòèêà è ñèñòåì í û é à í à ë èç. - 1993. -
¹ 3. - Ñ.69-78

3. Ãëàäóí Â.Ï. Ïëà í èðîâàíèå ðå ø å í èé. - Êèåâ: Íàóê. äóìêà, 1987. - 168ñ.

4. Ãëàäóí Â.Ï. Ïðîöåññû ô îð ìèð îâà íèÿ í î âûõ çíà íèé . - Ñîôèÿ: Ïåäàãîã, 1994. - 189ñ.

5. Â.Í.Êîâàëü Ìåòîäû îáðàáîòêè èíôîðìàöèè äëÿ ñèñòåì îá íàðóæå í è ÿ äâèæóùèõñÿ îáúåêòîâ. Ïðåï. Èí-òà
êèáåðíåòèêè èì.Â.Ì.Ãëó ø ê î â à , - Êèåâ. - 1989. - ¹ 89-55. - 41ñ.

6. Êîâàëü Â.Í . Ýëåìåíòû ìàòåìàòè÷åñêîãî à í à ë èçà ì í î ã î ì å ð í û õ ïðîöåññîâ. Ïðåïðèíò Èíñòèòóòà êèáåðí åòèêè
èì.Â.Ì.Ãëó ø ê î â à, - Êèåâ. - 1989. - ¹ 89-38. - 42ñ.

7. Áóëàâå í ê î Î . Í. Ïàðàëëåëüíûå àðõèòåêòóðû â âû÷èñëèòåëüíûõ ñèñòåìàõ. Î áçîð // Óïð. ñèñòåìû è ìà ø è í û. -
1993. - ¹3. - Ñ.37-51

8. Êîì ïü þòåðû, î êîòîðûõ õîäÿò ëåãåíäû (ïî ìàòåðèàëàì “Byte") Êî ì ïü þòåð í î å î á î çðåíèå ¹29 (53). - Êèåâ:
àâãóñò 1966ã. Ñ.11-20.

9. Ì îçãîâîé òðåñò Áèëà Ãåéòñà. Computer Word N 4, Êèåâ: Ñ.23-28

10. Èíòåëëåêòóàëüíûå ðå ø à þ ù èå ìà ø è í û : ïðîáëåìû ñîçäàíèÿ è îñíîâíûå ïðèíöèïû / À.Â.Ïàëàãèí, Â. Í.Êîâàëü,
Ç.Ë.Ðàáè í î â è÷ è äð. // Óïð. ñèñòåìû è ìà ø è í û. - 1993. ¹3. - Ñ.37-51.

11. Êîâàëü Â.Í., Ïàëàãèí À.Â., Ðàáèí î â è÷ Ç.Ë. Âîïðîñû ìåòîäîëîãèè è ôîðìàëèçàöèè ïîñòà í îâ îê è ðå ø å í è ÿ
ïðîáëåì //Êèáåðíåòèêà è ñèñòåìí û é à í àëèç.-1995. ¹3. - Ñ.138-143.

12. Âû÷èñëèòåëüíàÿ ñèñòåìà. Ïàòå íò ÐÔ ¹2042193. Êë ä-06F15/16 Áþë. 23 îò 20.08.95 / Áóëàâå í ê î Î . Í., Êîâàëü
Â.Í., Ïàëàãèí À.Â. è äð.

13. Î á÷èñëþâàëüíà ñèñòåìà. Ïàòå íò Óêðà¿íè ¹ 19875. Êë ä-06F15/16 Áþë. 6 îò 25.12.1997ð. Áóëàâå íê î Î . Ì . ,
Êîâàëü Â.Ì., Ïàëàã³í Î.Â. òà ³í.

14. Ïîñïåëîâ Ä.À. Ì îäåëèðîâàíèå ðàññóæäåíèé. - Ì.: Ðàäèî è ñâÿçü, 1`989. - 184ñ.

